Structure Reports

Online
ISSN 1600-5368

Saida Latreche, ${ }^{\text {a }}$ Ahcene Bouchemma, ${ }^{\text {b }}$ Sofiane Bouacida, ${ }^{\text {c* }}$ Mustapha Bouhenguel ${ }^{\text {b }}$ and Abdelhamid Mousser ${ }^{\text {d }}$
${ }^{\text {a }}$ Département de Chimie, Centre Universitaire de Tébessa, 12000 Tébessa, Algeria,
${ }^{\text {b }}$ Laboratoire de Chimie Appliquée et Technologie des Matériaux, Centre Universitaire Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria, ${ }^{\text {' }}$ Département de Chimie, Faculté des Sciences et Sciences de I'Ingénieur, Université A.Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria, and ${ }^{\text {d }}$ Faculté des Sciences, Département de Chimie, Université Mentouri Constantine, 25000
Constantine, Algeria
Correspondence e-mail:
bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.070$
$w R$ factor $=0.172$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,5-Bis(4-fluorophenyl)-1-propyl-1,3,5-triazacyclohexane

The heterocyclic ring of the title compound, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{3}$, adopts a chair conformation with two 4-fluorophenyl groups in axial and one propyl group in an equatorial position. The torsion angles around the $\mathrm{N}-\mathrm{C}$ bonds in the triazacyclohexane are in the range 55.8 (3)-60.2 (3) ${ }^{\circ}$.

Comment

Conformational effects of non-bonding electrons are a feature of heterocyclic chemistry (Riddel, 1980). The heterocyclic nucleus in the 1,3,5-triazacyclohexane is expected to adopt a chair conformation and four distinct types of substituent orientation can be postulated, viz. eee, eea, eaa and aaa, where $e=$ equatorial and $a=$ axial; all four conformers have axial repulsions involving substituents and/or lone pairs of electrons on the N atoms. Several conformations of 1,3,5-trialkyl-1,3,5triazacyclohexanes in solution have been investigated by dipole moment measurement and NMR spectroscopy, the former approach suggesting varying amounts of eee, eea and eaa conformers. X-ray studies of the 1,3,5-tricyclohexyl compound established that it adopts the eea conformation in the crystal structure (Bouchemma et al., 1988). The various 1,3,5-triaryl-1,3,5-triazacyclohexanes adopt the diaxial-equatorial orientation of substituents in the solid state, thus avoiding 1,3-diaxial lone-pair repulsions (Giumanini et al., 1985; Gilardi et al., 2003; Bouchemma et al., 1989, 1990).

(I)

In the present work, a new derivate, (I), of triazacyclohexane is reported. The molecular geometry and the atomnumbering scheme of (I) are shown in Fig. 1. The 1,3,5triazacyclohexane ring takes on the chair conformation which is typical of these rings (Gilardi et al., 2003).

The structure of a very similar compound, viz. 1-propyl-3,5-bis(2-fluorophenyl)-1,3,5-triazacyclohexane, (II), has been reported (Latreche et al., 2006). In both (I) and (II) the heterocyclic rings adopt chair conformations, with two

Received 27 July 2006
Accepted 2 September 2006
fluorophenyl substituents situated in axial positions, and a third (propyl) equatorial. The crystal structure is stabilized by van der Waal interactions and consists of alternating layers along the b axis, at $c=\frac{1}{4}$ and $c=\frac{3}{4}$.

Experimental

The title compound was obtained by mixing a 2:1:1 stoichiometric ratio of propylamine and 4 -fluoroaniline with formalin in ethanol $(25 \mathrm{ml})$ at 293 K . The resulting solution was evaporated on a rotary evaporator to dryness and the white residue was crystallized from cyclohexane.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{3}$	$V=811.35(4) \AA^{3}$
$M_{r}=317.38$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.0610(2) \AA$	Mo $K \alpha$ radiation
$b=10.0150(3) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$c=13.5200(4) \AA$	$T=150(2) \mathrm{K}$
$\alpha=91.4440(10)^{\circ}$	Prism, colourless
$\beta=92.4060(10)^{\circ}$	$0.40 \times 0.25 \times 0.10 \mathrm{~mm}$
$\gamma=98.1090(17)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 13114 measured reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0293 P)^{2}\right.
$$ $+1.3984 P]$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: none

All H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with $\mathrm{C}-\mathrm{H}=0.98$ (methyl), 0.95 (aromatic) and $0.99 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl C $)$ or $1.2 U_{\text {eq }}$ (aromatic and methylene C atoms).

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Drs R. D. Köhn and G. K. Köhn (Department of Chemistry, University of Bath, England) for their technical

Figure 1
The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
assistance in the X-ray data collection. SL thanks the Université de Tébessa, Algeria, for financial support.

References

Bouchemma, A., McCabe, P. H. \& Sim, G. A. (1988). Acta Cryst. C44, 14691472.

Bouchemma, A., McCabe, P. H. \& Sim, G. A. (1989). J. Chem. Soc. Perkin Trans. 2, 583-587.
Bouchemma, A., McCabe, P. H. \& Sim, G. A. (1990). Acta Cryst. C46, 410414.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gilardi, R., Evans, R. N. \& Duddu, R. (2003). Acta Cryst. E59, o1187-o1188.
Giumanini, A. G., Verardo, G., Randaccio, L., Brescianipahor, N. \& Traldi, P. (1985). J. Prakt. Chem. 327, 739-748.

Latreche, S., Bouchemma, A., Bouacida, S., Bouhenguel, M. \& Mousser, A. (2006). Acta Cryst. E62, o4676-o4678.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Riddel, F. G. (1980). The Conformational Analysis of Heterocyclic Compounds, pp. 1-153. London: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

